
Locating System Problems Using Dynamic
Instrumentation

Vara Prasad IBM
prasadav@us.ibm.com

William Cohen Red Hat, Inc.
wcohen@redhat.com

Frank Ch. Eigler Red Hat, Inc.
fche@redhat.com

Martin Hunt Red Hat, Inc.
hunt@redhat.com

Jim Keniston IBM
jkenisto@us.ibm.com

Brad Chen Intel Corporation
brad.chen@intel.com

Abstract

Diagnosing complex performance or kernel de-
bugging problems often requires kernel modifi-
cations with multiple rebuilds and reboots. This
is tedious, time-consuming work that most de-
velopers would prefer to minimize.

Systemtap uses the kprobes infrastructure to
dynamically instrument the kernel and user ap-
plications. Systemtap instrumentation incurs
low overhead when enabled, and zero overhead
when disabled. SystemTap provides facilities
to define instrumentation points in a high-level
language, and to aggregate and analyze the in-
strumentation data. Details of the SystemTap
architecture and implementation are presented,
along with an example of its application.

1 Introduction

This paper introduces SystemTap, a new per-
formance and kernel troubleshooting infras-
tructure for Linux. SystemTap provides a
scripting environment that can eliminate the

modify-build-test loop often required for un-
derstanding details of Linux kernel behavior.
SystemTap is designed to be sufficiently ro-
bust and efficient to support applications in pro-
duction environments. Our broad goals are to
reduce the time and complexity for analyzing
problems that involve kernel activity, to greatly
expand the community of engineers to which
such analyses are available, and to reduce the
need to modify and rebuild the kernel as a trou-
bleshooting technique.

Today, identifying functional problems in
Linux systems often involves modifying kernel
source with diagnostic print statements. The
process can be time-consuming and require de-
tailed knowledge of multiple subsystems. Sys-
temTap uses dynamic instrumentation to make
this same level of data available without the
need to modify kernel source or rebuild the ker-
nel. It delivers this data via a powerful scripting
facility. Interesting problem-analysis tools can
be implemented as simple scripts.

SystemTap is also designed for analyzing
system-wide performance problems. While ex-
isting Linux performance tools like iostat,
vmstat, top, and oprofile are valuable

• 49 •

50 • Locating System Problems Using Dynamic Instrumentation

for understanding certain types of performance
problems, there are many kinds of problems
that they don’t readily expose, including:

• Interactions between applications and the
operating system

• Interactions between processes

• Interactions between kernel subsystems

• Problems that are obscured by ordinary
behavior and require examination of an ac-
tivity trace

Often these problems are difficult to reproduce
in a test environment, making it desirable to
have a tool that is sufficiently flexible, robust
and efficient to be used in production environ-
ments. These scenarios further motivate our
work on SystemTap.

SystemTap builds on, and extends, the capa-
bilities of the kprobes [6, 7] kernel debug-
ging infrastructure. SystemTap has been influ-
enced by a number of earlier systems, includ-
ing kerninst [9], Dprobes [6], the Linux Trace
Toolkit (LTT) [10], the Linux Kernel State
Tracer (LKST) [1], and Solaris DTrace [5, 8].

This paper starts with a brief discussion of the
existing dynamic instrumentation provided by
Kprobes in the Linux 2.6 kernel, and explains
the disadvantages of this approach. Next we de-
scribe a few key aspects of the SystemTap de-
sign, including the programming environment,
the tapset abstraction, and safety in SystemTap.
We continue with an example that illustrates the
power of SystemTap for troubleshooting per-
formance problems that are difficult to address
with existing Linux tools. We close the paper
with conclusions and future work.

2 Kprobes

Kprobes, a new feature in the Linux 2.6 kernel,
allows for dynamic, in-memory kernel instru-
mentation. To use kprobes, the developer cre-
ates a loadable kernel module with calls into
the kprobes interface. These calls specify a
kernel instruction address, the probe point, and
an analysis routine or probe handler. Kprobes
arranges for control flow to be intercepted by
patching the probe point in memory, with con-
trol passed to the probe handler. Kprobes has
been carefully designed to allow safe inser-
tion and removal of probes and to allow in-
strumentation of almost any kernel routine. It
lets developers add debugging code into a run-
ning kernel. Because the instrumentation is dy-
namic, there is no performance penalty when
probes are not used.

The basic control flow interception facility of
kprobes has been enhanced with a number of
additional facilities. Jprobes makes it easy to
trace function calls and examine function call
parameters. Kretprobes is used to intercept
function returns and examine return values. Al-
though it is a powerful system for dynamic in-
strumentation, a number of limitations prevent
kprobes from broader use:

• Kprobes does very little safety checking
of its probe parameters, making it easy to
crash a system through accidental misuse.

• Safe use of kprobes often requires detailed
knowledge of the code path to be instru-
mented. This limits the group of develop-
ers who will use kprobes.

• Due to references to kernel addresses
and specific kernel symbols, the porta-
bility of the instrumentation code using
the kprobes interface is poor. This lack
of portability also limits re-usability of
kprobes-based instrumentation.

2005 Linux Symposium • 51

• Kprobes does not provide a convenient
mechanism to access a function’s local
variables, except for a jprobe’s access to
the arguments passed into the function.

• Although using kprobes doesn’t require a
kernel build-install-reboot, it does require
knowledge to build a kernel module and
lacks the support library routines for com-
mon tasks. This is a significant barrier for
potential users. A script-based system that
provides the support for common opera-
tions and hides the details of building and
loading a kernel module will serve a much
larger community.

These limitations are part of our motivation for
creating SystemTap.

3 SystemTap

SystemTap [2] is being designed and devel-
oped to simplify the development of system in-
strumentation. The SystemTap scripting lan-
guage allows developers to write custom in-
strumentation and analysis tools to address the
performance problems they are examining. It
also improves the reuse of existing instrumen-
tation. Thus, people can build on the expertise
of other developers who have already created
instrumentation for specific kernel subsystems.

Portability is a concern of SystemTap. The in-
tent is to provide SystemTap on all architec-
tures to which kprobes has been ported.

Safety of the SystemTap instrumentation is an-
other major concern. The tools minimize the
chance that the SystemTap instrumentation will
cause system crashes or corruption.

tapset library

probe script
parse

elaborate

translate to C, compile

load module, start probe

extract output, unload

probe output

probe kernel object

Figure 1: SystemTap processing steps

3.1 SystemTap processing steps

The steps SystemTap uses to convert an instru-
mentation script into executable instrumenta-
tion and extract collected data are shown in Fig-
ure 1. SystemTap takes a compilation approach
to generate instrumentation code, unlike the in-
terpreter approach other similar systems have
taken [6, 5, 8]. A compiler converts the in-
strumentation script and tapset library into C
code for a kernel module. After compilation
and linking with the SystemTap runtime, the
kernel module is loaded to start the data collec-
tion. Data is extracted from module into user-
space via reliable and high performance trans-
port. Data collection ends when the module
is unloaded from the kernel. The elaboration,
translation, and execution steps are described
in greater detail in the following subsections.

3.2 Probe language

The SystemTap input consists of a script, writ-
ten in a simple language described in Section 4.
The language describes an association of han-
dler subroutines with probe points. A probe

52 • Locating System Problems Using Dynamic Instrumentation

point may be a particular place in kernel/user
code, or a particular event (timers, counters)
that may occur at any time. A handler is a
subroutine that is run whenever the associated
probe point is hit.

The SystemTap language is inspired by the
UNIX scripting language awk [4] and is sim-
ilar in capabilities to DTrace’s “D” [5]. It
uses a simplified C-like syntax, lacking types,
declarations, and most indirection, but adding
associative arrays and simplified string process-
ing. The language includes some extensions to
interoperate with the target software being in-
strumented, in order to refer to its data and pro-
gram state.

3.3 Elaboration

Elaboration is a processing phase that analyzes
the input script and resolves references to the
kernel or user symbols and tapsets. Tapsets are
libraries of script or C code used to extend the
capability of a basic script, and are described in
Section 5. Elaboration resolves external refer-
ences in the script file to symbolic information
and imported script subroutines in preparation
for translation to C. In this way, it is analogous
to linking an object file with needed libraries.

References to kernel data such as function pa-
rameters, local and global variables, functions,
and source locations all need to be resolved
to actual run-time addresses. This is done by
processing the DWARF debugging information
emitted by the compiler during the kernel build,
as is done in a debugger. All debug data pro-
cessing occurs prior to execution of the result-
ing kernel module.

Debugging data contains enough information to
locate inlined copies of functions (very com-
mon in the Linux kernel), local variables, types,

and declarations beyond what are ordinarily ex-
ported to kernel modules. It enables place-
ment of probe points in the interior of func-
tions. However, the lack of debug data in some
user programs (for example, stripped binaries)
will limit SystemTap’s ability to place probes
in such code.

3.4 Translation

Once a script has been elaborated, it is trans-
lated into C.

Each script subroutine is expanded to a block
of C that includes necessary locking and safety
checks. Looping constructs are augmented
with checks to prevent infinite loops. Each vari-
able shared by multiple probes is mapped to an
appropriate static declaration, and accesses are
protected by locks. To minimize the use of ker-
nel stack space, local variables are placed in a
synthetic call frame.

Probe handlers are registered with the kernel
using one of the kprobes [6, 7] family of reg-
istration APIs. For location-type probe points
in the kernel, probe points are inserted in ker-
nel memory. For user-level locations, the probe
point is inserted in the executable code loaded
into user memory while the probe handler is ex-
ecuted in the kernel.

The translated script includes references to a
common runtime that provides routines for
generic associative arrays, constrained memory
management, startup, shutdown, I/O, and other
functions.

When translation is complete, the generated C
code is compiled and linked with the runtime
into a stand-alone kernel module. The final
module may be cryptographically signed for
safe archiving or remote use.

2005 Linux Symposium • 53

3.5 Execution

After linking, the SystemTap driver program
simply loads the kernel module using insmod.
The module will initialize itself, insert the
probes, then wait for probe points to be hit.
When a probe is hit, the associated handler rou-
tine is invoked, suspending the thread of exe-
cution. When all handlers for that probe point
have been executed, the thread of execution re-
sumes. Because thread of execution is sus-
pended, handlers must not block. Probe han-
dlers should hold locks only while manipulat-
ing shared SystemTap variables, or as neces-
sary to access previously unlocked target-side
data.

The SystemTap script concludes when the user
sends an interrupt to the driver program, or
when the script calls exit. At the end of the
run, the module is unloaded and its probes are
removed.

3.6 Data Collection and Presentation

Data collected from SystemTap in the kernel
must be transmitted to user space. This trans-
port must provide high throughput and low la-
tency, and impose minimal performance impact
on the monitored system. Two mechanisms are
currently being tested: relayfs and netlink.

Relayfs provides an efficient way to move large
blocks of data from the kernel to user space.
The data is sent via per-cpu buffers. Relayfs
can be compiled into the kernel or built as a
loadable module.

Netlink allows a simple stream of data to be
sent using the socket APIs. Performance testing
suggests that netlink provides less bandwidth
than relayfs for transferring large amounts of
trace data.

By default, SystemTap output will be processed
in batches and written to stdout at script exit.
The output will also be automatically saved to a
file. SystemTap can optionally produce a real-
time stream as required by the application.

In user-space, SystemTap can report data as
simple text, or in structured computer-parsable
forms for consumption by applications such as
graphics generators.

4 SystemTap Programming Lan-
guage

A SystemTap script file is a sequence of top-
level constructs, of which there are three types:
probe definitions, auxiliary function defini-
tions, and global variable declarations. These
may occur in any order, and forward references
are permitted.

A probe definition identifies one or more probe
points and a body of code to execute when any
of them is hit. Multiple probe handlers may ex-
ecute concurrently on a multiprocessor. Mul-
tiple probe definitions may end up referring to
the same event or program location: all of them
are run in an unspecified sequence when the
probe point is hit. For tapset builders, there is
also a probe aliasing mechanism discussed in
Section 5.1

An auxiliary function is a subroutine for probe
handlers and other functions. In order to con-
serve stack space, Systemtap limits the number
of outstanding nested or recursive calls. The
translator provides a number of built-in func-
tions, which are implicitly declared.

A global variable declaration lists variables that
are shared by all probe handlers and auxiliary
functions. (If a variable is not declared global,
it is assumed to be local to the function or probe
that references it.)

54 • Locating System Problems Using Dynamic Instrumentation

A script may make references to an identi-
fier defined elsewhere in the library of script
tapsets. Such a cross-reference causes the en-
tire tapset file providing the definition to be
merged into the elaborated script, as if it was
simply concatenated. See Section 5 for more
information about tapsets.

Fatal errors that occur during script execution
cause a cleanup of activity associated with the
SystemTap script, and an early abort. Running
out of memory, dividing by zero, exceeding
an operation count limit and calling too many
nested functions are a few types of errors that
will terminate a script.

4.1 Probe points

A probe definition specifies one or more probe
points in a comma-separated list, and an as-
sociated action in the form of a statement
block. A trigger of any of the probe points
will run the block. Each probe point spec-
ification has a “dotted-functor” syntax such
as kernel.function("foo").return.
The core SystemTap translator recognizes a
family of these patterns, and tapsets may define
new ones. The basic idea of these patterns is to
provide a variety of user-friendly ways to refer
to program spots of interest, which the transla-
tor can map to a kprobe on a particular PC value
or an event.

The first group of probe point patterns re-
lates to program points in the kernel and ker-
nel modules. The first element, kernel or
module("foo"), identifies the probe’s tar-
get software as kernel or a kernel module
named foo.ko. This first element is used to
find the symbolic debug information to resolve
the rest of the pattern.

For a probe point defined on a statically known
symbol or other program structure, the transla-
tor can use debug information to expose local

variables within the scopes of the active func-
tions to the script.

4.1.1 Functions

To identify a function, the function("fn")
element does so by name. If the function is in-
lineable, all points of inlining are included in
the set. The function name may be suffixed by
@filename or even @filename:lineno
to identify a source-level scope within which
the identifiers should be searched. The func-
tion name may include wildcard characters *
and ? to refer to all suitable matching names.
These may expand to a huge list of matches,
and therefore must be used with discretion. The
optional element return may be added to re-
fer to the moment of each function’s return
rather than the default entry. Below are some
sample specifications for function probe points:

kernel.function("sys_read")

.return

A return probe on the named function.

module("ext3").function("*@fs/

ext3/inode.c")

Every function in the named source file,
which is part of ext3fs.

4.1.2 Events

Probe points may be defined on abstract events,
which are not associated with particular loca-
tions in the target program. Therefore, the
translator cannot expose much symbolic infor-
mation about the context of the probe hit to
the script. Examples of probes that would fall
in this category include probes that perform
sampling based on timers or performance mon-
itoring hardware, and probes that watch for
changes in a variable’s value.

2005 Linux Symposium • 55

SystemTap defines special events associated
with initialization and shutdown of the instru-
mentation. The special element begin trig-
gers a probe handler early during SystemTap
initialization, before normal probes are en-
abled. Similarly, end triggers a probe dur-
ing late shutdown, after all normal probes have
been disabled.

4.2 Language Elements

Function and probe handler bodies are writ-
ten using standard statement/expression syntax
that borrows heavily from awk and C. The Sys-
temTap language allows the C, C++, and awk
style comments. White space and comments
are treated as in C.

SystemTap identifiers have the same syntax as
C identifiers, except that $ is also a legal char-
acter. Identifiers are used to name variables and
functions. Identifiers that begin with $ are in-
terpreted as references to variables in the target
software, rather than to SystemTap script vari-
ables.

The language includes a small number of data
types, but no type declarations: a variable’s
type is inferred from its use. To support this, the
translator enforces consistent typing of func-
tion arguments and return values, array indexes
and values. Similarly, there are no implicit type
conversions between strings and numbers.

• Numbers are 64-bit signed integers. Liter-
als can be expressed in decimal, octal, or
hexadecimal, using C notation. Type suf-
fixes (e.g., L or U) are not used.

• Strings. Literals are written as in C. Over-
all lengths are limited by the runtime sys-
tem.

• Associative arrays are as in awk. A given
array may be indexed by any consistent
combination of strings and numbers, and
may contain strings, numbers, or statisti-
cal objects.

• Statistics. These are special objects
that compute aggregations (statistical av-
erages, minima, histograms, etc.) over
numbers.

The language has traditional if-then-else
statements and expressions of C and awk. The
language also allows structured control state-
ments such as for and while loops. Unstruc-
tured control flow operations such as labels and
goto statements are not supported. The trans-
lator inserts runtime checks to bound the num-
ber of procedure calls and backward branches.

To support associative arrays, the SystemTap
language has iterator and delete statements.
The iterator statement allows the programmer
to specify an operation to perform on all the el-
ements in the associative array. The delete op-
eration can remove one or all the elements in
the associative array. The associative arrays al-
low selection of an item by one or more keys.
The in operation allows the code to determine
whether an entry exists in the associative array.

The typical set of arithmetic, bit, assignment,
and unary operations in C are available in the
SystemTap language, but they operate on 64-
bit quantities. The assignment and comparison
operations are overloaded for strings.

The SystemTap statistic type allows script writ-
ers to keep track of the typical statistics such as
minimum, maximum, and average. The <<<
operator updates a variable storing statistics in-
formation as shown in the example below:

global avg(s)
probe kernel.syscall("read") {

56 • Locating System Problems Using Dynamic Instrumentation

process->s <<< $size
}
probe end {

trace (s)
}

SystemTap does not support type casts,
address-of operations, or following of arbitrary
pointers through structures. However, macro
operations will allow access to elements of a
particular structure.

4.3 Auxiliary functions

An auxiliary function in SystemTap has es-
sentially the same syntax and semantics as in
awk. Specifically, an auxiliary function defini-
tion consists of the keyword function, a for-
mal argument list and a brace-enclosed state-
ment block. SystemTap deduces the types of
the function and its arguments from the expres-
sions that refer to the function. An auxiliary
function must always return a value even if it is
ignored.

5 Tapsets

When diagnosing systemic problems, one is
faced with tracing various subsystems of the
operating system and applications. To facili-
tate such diagnosis, SystemTap includes a li-
brary of instrumentation modules for various
subsystems known as tapsets. The list of avail-
able tapsets is published for use in end-user
scripts. There are two ways to create tapsets:
via the SystemTap scripting language and via
the C language.

5.1 Script tapsets

The simplest kind of tapset is one that uses
the SystemTap script language to define new

probes, auxiliary functions, and global vari-
ables, for invocation by an end-user script or
another tapset. One can use this mechanism
to define commonly useful auxiliary functions
like stp_print() for special purpose for-
matting of output data. This facility can also be
used to create global variables that can be ref-
erenced in the end user scripts as built-in func-
tions. In Figure 2 a tgid_history global
variable is created that gives a history of the last
few scheduled tasks.

In addition, a script tapset can define a probe
alias. Aliasing is a way of synthesizing a higher
level probe from a lower level one. The exam-
ple tapset shown in Figure 3 defines aliases for
the read system call, so that a SystemTap user
does not have to know the name of the corre-
sponding kernel function.

Aliasing consists of renaming a probe point,
and may include some script statements. These
statements are all executed before the oth-
ers that are within the user’s probe definition
(which referenced the alias), as if they were
simply transcribed there. This way, they can
prepare some useful local variables, or even
conditionally reject a probe hit using the next
statement.

Aliases can also be used to define a new “event”
and supply some local variables for use by its
handlers as in Figure 4.

An end-user script that uses the probe alias in
Figure 4 may look like Figure 5.

5.2 C language tapsets

To allow kernel developers to work in a fami-
lar programming language, SystemTap sup-
ports a C interface for creating tapsets. A C
tapset is a set of data-collection functions for
a given subsystem. Data collection functions

2005 Linux Symposium • 57

global tgid_history # the last few tgids scheduled

global _histsize

probe begin {
_histsize = 10

}

probe kernel.function("context_switch") {
rotate array
for (i=_histsize-1; i>0; i--)

tgid_history [i] = tgid_history [i-1];
tgid_history [0] = $prev->tgid;

}

Figure 2: SystemTap script using global variable.

probe kernel.syscall.read = kernel.function("sys_read")
{ }

Figure 3: SystemTap script using probe alias.

probe kernel.resource.oom.nonroot =
kernel.statement("do_page_fault").label("out_of_memory") {
if ($tsk->uid == 0) next;

victim_tgid = $tsk->tgid;
victim_pid = $tsk->pid;
victim_uid = $tsk->uid;
victim_fault_addr = $address

}

Figure 4: SystemTap script for new out of memory event.

probe kernel.resource.oom.nonroot {
trace ("OOM for pid " . string (victim_pid))

}

Figure 5: SystemTap script using out of memory event.

58 • Locating System Problems Using Dynamic Instrumentation

in the tapset are called tapset functions. Tapset
functions export data using one or more vari-
ables. The C API requires a tapset writer to
register each probe point, corresponding data-
collection function, and the data exported by
the function. When an end-user script refers to
the data exported by the corresponding tapset
function in the action block, SystemTap calls
the associated tapset function in the probe han-
dler. The result is that local variables in the user
script are initialized with values from the tapset
function.

5.3 System call tapset

SystemTap provides tapsets for various subsys-
tems of the kernel; the system call tapset is an
example of one such tapset. As system calls are
the primary interface for applications to interact
with the kernel, understanding them is a power-
ful diagnostic tool. The system call tapset pro-
vides a probe handler for each system call en-
try and exit. A system call entry probe gives
the values of the arguments to the system call,
and the exit probe gives the return value of the
system call.

6 Safety

SystemTap is designed for safe use in produc-
tion systems. One implication is that it should
be extremely difficult, if not impossible, to dis-
able or crash a system through use or misuse
of SystemTap. Problems like infinite loops, di-
vision by zero, and illegal memory references
should lead to a graceful failure of a SystemTap
script without otherwise disrupting the moni-
tored system. At the same time, we’d like to
compile extensions to native machine code, to
benefit from the stability of the existing tool
chain, minimize new kernel code, and approach
native performance.

Our basic approach to safety is to design a safe
scripting language, with some safety properties
supported by runtime checks. Table 1 provides
some details of our basic approach. System-
Tap compiles the script file into native code and
links it with the SystemTap runtime library to
create a loadable kernel module. Version and
symbol name checks are applied by insmod.
The elaborator generates instrumentation code
that gracefully terminates loops and recursion,
if they run beyond a configurable threshold. We
avoid privileged and illegal kernel instructions
by excluding constructs in the script language
for inlined assembler, and by using compiler
options used for building kernel modules.

SystemTap incorporates several additional de-
sign features that enhance safety. Explicit
dynamic memory allocation by scripts is not
allowed, and dynamic memory allocation by
the runtime is avoided. SystemTap can fre-
quently use explicitly synthesized frames in
static memory for local variables, avoiding us-
age of kernel stack. Language and runtime sys-
tems ensure that SystemTap-generated code for
probe handlers is strictly terminating and non-
blocking.

SystemTap safety requires controlling access to
kernel memory. Kernel code cannot be invoked
directly from a SystemTap script. SystemTap
language features make it impossible to express
kernel data writes or to store a pointer to ker-
nel data. Additionally, a modified trap handler
is used to safely handle invalid memory ref-
erences. SystemTap supports a “guru” mode
where certain of these constraints can be re-
moved (e.g., in a tapset), allowing a tradeoff
between safety and kernel debugging require-
ments.

6.1 Safety Enhancements

A number of options are planned that extend
the safety and flexibility of SystemTap to match

2005 Linux Symposium • 59

la
ng

ua
ge

de
sig

n

tra
ns

la
to

r
in

sm
od

ch
ec

ks
ru

nt
im

e
ch

ec
ks

m
em

or
y

po
rta

l

sta
tic

va
lid

at
or

infinite loops x o o
recursion x o o
division by zero x o o
resource constraints x x
locking constraints x x
array bounds errors x x x o
invalid pointers o o o
heap memory bugs x o
illegal instructions x o
privileged instructions x o
memory r/w restrictions x x o o
memory execute restrictions x x o o
version alignment o x
end-to-end safety x x
safety policy specification facility x

Table 1: SystemTap safety mechanisms. An “x” indicates that an aspect of the implementation
(columns) is used to implement a particular safety feature (rows). An “o” indicates optional func-
tionality.

60 • Locating System Problems Using Dynamic Instrumentation

and exceed that of other systems. A memory
and code “portal” directs references to kernel
memory outside the loadable module through
a special-purpose interpeter or “portal.” This
provides a single point of control for related
safety issues, and facilitates a desireable sep-
aration of safety policy from mechanism. Triv-
ial policies would support “guru mode” (no re-
strictions) and default mode (read restrictions
to I/O memory, restricted write and code ac-
cess). Other simple policies expand access
incrementally, for example, allowing external
calls to an explicit list of kernel subroutines.
Eventually, the policy could be extended to sup-
port security goals such as secure non-root exe-
cution and restricting memory access based on
user credentials.

An optional static analyzer examines a dis-
assembled kernel module and confirms that
it satisfies certain safety properties. Simple
checks include disallowing privileged instruc-
tions, locking primitives and instructions that
are illegal in kernel mode. In the future, more
elaborate checks may be included to confirm
that loop counters, memory portals and other
safety features are used.

6.2 Comparision to Other Systems

Solaris DTrace includes a number of unusual
features intended to enhance the safety and se-
curity of the system. These features include
a very restricted scripting language and the
scripts being interpreted rather than compiled.

DTrace’s D language does not support proce-
dure declarations or a general purpose looping
construct. This avoids a number of safety is-
sues in scripts including infinite loops and infi-
nite recursion.

Because D scripts are interpreted rather than
executed directly, it is impossible for them to

include illegal or privileged instructions or to
invoke code outside of the DTrace execution
environment. The interpreter can also catch
invalid pointer dereferences, division by zero,
and other run-time errors.

SystemTap will support kernel debugging fea-
tures in guru mode that DTrace does not, in-
cluding the ability to write arbitrary locations
in kernel memory and the ability to invoke ar-
bitrary kernel subroutines.

Because the language infrastructure used by
SystemTap is common to all C programs, it
tends to be better tested and more robust than
the special-purpose interpreter used by DTrace.

The embedding of an interpreter in the Solaris
kernel represents significant additional kernel
functionality. This introduces an increased risk
of kernel bugs that could lead to security or re-
liability issues.

Dprobes and Dtrace have many safety features
in common. Both use an interpreted language.
Like SystemTap, both use a modified kernel
trap-handler to capture illegal memory refer-
ences. Like kprobes, dprobes is intended for
use primarily by kernel developers. Conse-
quently, it exposes the kprobes layer in such a
way that it is not crashproof. SystemTap seeks
to address these safety issues.

6.3 Security

It is important that SystemTap can be used
without significantly impacting the overall se-
curity of the system. Given that SystemTap is
only available to privileged users, our initial se-
curity concerns are that the system be crash-
proof by design, and that its implementation
is of sufficient quality and simplicity to protect
users from unintentional lapses. A specific con-
cern is the security of the communication layer;

2005 Linux Symposium • 61

that the kernel-to-user transport is secured from
non-privileged users.

Future versions of SystemTap may provide fea-
tures that support secure use of SystemTap by
non-privileged users. Specific features that
might be required include:

• Protection of kernel memory based on user
credentials.

• Protection of kernel-to-user transport
based on user credentials.

• Recognition of a restricted subset of the
SystemTap language that is permissible
for non-privileged users.

A security scheme based on a virtual machine
monitor such as Xen [3] might provide a sim-
pler and general solution to secure SystemTap
use by non-privileged users.

7 Example SystemTap Script

The SystemTap scripting language lends itself
to writing compact instrumentation. The fol-
lowing example demonstrates a simple script
to collect information. On SMP machines, the
interprocessor interrupt is an expensive oper-
ation. One can find how many interproces-
sor interrupts are performed on an SMP ma-
chine by examining the LOC: entry of /proc/
interrupts. However, this entry does not
give a complete picture of what is causing the
interprocessor interrupts.

A developer would like to know the process
(PID), the process name, and the backtrace to
get a better context of what is triggering the
interprocessor interrupts. Figure 6 shows the
SystemTap script used to accumulate that in-
formation into an associative array. Each time

smp_call_function is called, the appro-
priate associative array entry is incremented.
The $pid provides the process id number,
the $pname provides the name of the pro-
cess, and stack() the back trace in the ker-
nel. This data is recorded in an associative ar-
ray traces. When the data collection is over
and the instrumentation is removed, the “end
probe” prints out information.

Figure 7 shows the beginning of the data gen-
erated from a dual processor x86-64 machine
when a DVD has just been loaded on the ma-
chine. From the samples listed below, we see
that process 4010, hald, has caused a number of
interprocessor interrupts. With the stack back-
trace as part of the hash key, we can see that the
first entry has to do with the disk change in the
CDROM drive, and the second entry is caused
by sys_close.

8 Conclusions and Future Work

We have described current dynamic instrumen-
tation facilities in the Linux kernel and the need
for improvements. These motivate the Sys-
temTap architecture and salient features of its
scripting language. We described the tapset li-
brary and its importance in SystemTap. Safety
is a very important consideration of SystemTap
design and we described how safety considera-
tions impacted our SystemTap design. We pre-
sented an example of how SystemTap is used to
gather interesting data to diagnose a problem.
The Systemtap project is still in development.
In our continuing work, we plan to implement
tapset libraries for various kernel subsystems,
and expand SystemTap to trace user-level ac-
tivity.

62 • Locating System Problems Using Dynamic Instrumentation

global traces

probe kernel.function("smp_call_function") {
traces[$pid, $pname, stack()] += 1;

}

probe end {
print(traces);

}

Figure 6: SystemTap script to collect interprocessor interrupt information.

root# stp scf.stp
Press Control-C to stop.
All kprobes removed
traces[4010, hald, trace for 4010 (hald)
0xffffffff8011a551 : smp_call_function+0x1/0x70
0xffffffff80182c0c : invalidate_bdev+0x1c/0x40
0xffffffff8019bc48 : __invalidate_device+0x58/0x70
0xffffffff80188f89 : check_disk_change+0x39/0xa0
0xffffffff80133c90 : default_wake_function+0x0/0x10
0xffffffff802abeef : cdrom_open+0xa0f/0xa60
0xffffffff80133c90 : default_wake_function+0x0/0x10
0xffffffff80132650 : finish_task_switch+0x40/0x90
0xffffffff80346bb9 : thread_return+0x54/0x8b
0xffffffff801419cd : __mod_timer+0x13d/0x150
] = 18
traces[4010, hald, trace for 4010 (hald)
0xffffffff8011a551 : smp_call_function+0x1/0x70
0xffffffff80182c0c : invalidate_bdev+0x1c/0x40
0xffffffff8018856e : kill_bdev+0xe/0x30
0xffffffff801890d6 : blkdev_put+0x76/0x1c0
0xffffffff80181eb2 : __fput+0x72/0x160
0xffffffff801806de : filp_close+0x7e/0xa0
0xffffffff80180793 : sys_close+0x93/0xc0
0xffffffff8010e51a : system_call+0x7e/0x83
] = 27

...

Figure 7: Run of SMP call instrumentation.

2005 Linux Symposium • 63

9 Acknowledgements

We would like to express our thanks to Ananth
N. Mavinakayanahalli, Hien Q. Nguyen,
Prasanna S. Panchamukhi, and Thomas
Zanussi for their valuable contributions to the
project. The authors are indebted to Ulrich
Drepper and Roland McGrath for their help
and advice in the project. Thanks are in order
to Suparna Bhattacharya and Richard Moore
for sharing their knowledge of Kprobes and
Dprobes. We would also like to thank Rohit
Seth, Rusty Lynch, and Anil Keshavamurthy
for Linux kernel and Itanium expertise. Spe-
cial thanks to Doug Armstrong and Victoria
Gromova for their input on features for parallel
program analysis. Thanks to K. Sridharan
and Charles Spirakis for studying support of
common profiling tasks.

10 Trademarks and Disclaimer

This work represents the views of the authors and
does not necessarily represent the view of IBM, Red
Hat or Intel.

IBM is a registered trademark of International Busi-
ness Machines Corporation in the United States
and/or other countries.

Linux is a registered trademark of Linus Torvalds.

Solaris is a registered trademark of Sun Microsys-
tems, Inc.

Red Hat is a registered trademark of Red Hat, Inc.

Other company, product, and service names may be
trademarks or service marks of others.

References

[1] Linux kernel state tracer, May 2005.
http:
//lkst.sourceforge.net/.

[2] Systemtap, May 2005. http:
//sourceware.org/systemtap/.

[3] The xen virtual machine monitor, May
2005. http://www.cl.cam.ac.
uk/Research/SRG/netos/xen/.

[4] Alfred V. Aho, Brian K. Kernighan, and
Peter J. Weinberger. The AWK
Programming Language.
Addison-Wesley, 1988.

[5] Bryan M. Cantrill, Michael W. Shapiro,
and Adam H. Levinthal. Dynamic
Instrumentation of Production Systems.
In Proceedings of the 2004 USENIX
Technical Conference, pages 15–28, June
2004.

[6] Richard J. Moore. A universal dynamic
trace for Linux and other operating
systems. In FREENIX, 2001.

[7] Prasanna S. Panchamukhi. Kernel
debugging with kprobes: Insert printk’s
into linux kernel on the fly, Aug 2004.
http://www-106.ibm.com/
developerworks/library/
l-kprobes.html?ca=dgr-lnx%
w07Kprobe.

[8] Sun Microsystems, Santa Clara,
California. Solaris Dynamic Tracing
Guide, 2004.

[9] Ariel Tamches and Barton P. Miller.
Fine-grained dynamic instrumentation of
commodity operating system kernels. In
Proceedings of the Third Symposium on
Operating Systems Design and
Implementation, 1999.

64 • Locating System Problems Using Dynamic Instrumentation

[10] Karim Yaghmour and Michel R.
Dagenais. Measuring and characterizing
system behavior using kernel-level event
logging. In In Proceedings of the 2000
USENIX Annual Technical Conference,
2000.

